Deeplearning/Qfunctions/loaData.py

122 lines
4.0 KiB
Python
Raw Normal View History

2024-10-07 09:54:32 +08:00
import os
import pandas as pd
STATIC_PATH = './Static'
# 从文件夹中读取所有xlsx文件每个文件对应一个label
# labelNames为label的名字如果不提供则默认为文件名
def load_data(folder, labelNames, isDir):
# 检查folder参数
if folder is None:
raise ValueError("The 'folder' parameter is required.")
# 检查labelNames参数
if labelNames is None:
raise ValueError("The 'labelNames' parameter is required if 'folder' does not contain labels.")
folder = os.path.join(STATIC_PATH, folder)
# 看看有没有元数据文件夹
if not os.path.isdir(folder):
raise ValueError(f"The folder '{folder}' does not exist.")
# fileNames = [f for f in os.listdir(folder) if f.endswith('.xlsx')]
# # 获取数据的最大行数
# max_row_length = get_max_row_len(folder, fileNames)
# all_features = []
# for i, fileName in enumerate(fileNames):
# features = load_xlsx(folder + '/' + fileName, labelNames[i], max_row_length, 'zero')
# all_features.append(features)
# data = pd.concat(all_features, ignore_index = True)
data = None
if not isDir:
data = load_from_file(folder=folder, labelNames=labelNames)
else:
data = load_from_folder(folder=folder, labelNames=labelNames)
print(data)
return data
def load_from_folder(folder, labelNames):
2024-10-19 11:07:59 +08:00
all_features = []
for labelName in labelNames:
subfolder = os.path.join(folder, labelName)
if os.path.exists(subfolder) and os.path.isdir(subfolder):
fileNames = [f for f in os.listdir(subfolder) if f.endswith('.xlsx')]
max_row_length = get_max_row_len(subfolder, fileNames)
features = []
for fileName in fileNames:
file_path = os.path.join(subfolder, fileName)
features.append(load_xlsx(file_path, labelName, max_row_length, 'zero'))
if features:
all_features.append(pd.concat(features, ignore_index=True))
# 将所有标签的数据合并
return pd.concat(all_features, ignore_index=True)
2024-10-07 09:54:32 +08:00
def load_from_file(folder, labelNames):
fileNames = [labelName + ".xlsx" for labelName in labelNames]
# 获取数据的最大行数
max_row_length = get_max_row_len(folder, fileNames)
all_features = []
for i, fileName in enumerate(fileNames):
features = load_xlsx(folder + '/' + fileName, labelNames[i], max_row_length, 'zero')
all_features.append(features)
return pd.concat(all_features, ignore_index = True)
def load_xlsx(fileName, labelName, max_row_length = 1000, fill_rule = None):
df = pd.read_excel(fileName)
# 提取偶数列
features = df.iloc[0:, 1::2]
2024-10-19 11:07:59 +08:00
# 复制 features DataFrame
features_copy = features.copy()
# 使用 pd.concat 来追加副本到原始 DataFrame
features = pd.concat([features, features_copy], ignore_index=True, axis=1)
2024-10-07 10:06:20 +08:00
# 计算变化率
2024-10-19 11:07:59 +08:00
# first_value = features.iloc[0, :] # 获取第一行的数据
# features_pct_change = (features - first_value) / first_value
2024-10-07 10:06:20 +08:00
2024-10-19 11:07:59 +08:00
# features = features_pct_change
2024-10-07 10:06:20 +08:00
2024-10-07 09:54:32 +08:00
features.dropna(inplace=True)
features.reset_index(drop=True, inplace=True)
features = features.T
# 补全每一行到指定长度
features = features.apply(lambda row: fill_to_len(row, max_row_length, fill_rule), axis=1)
features['label'] = labelName
features.columns = [f'feature{i+1}' for i in range(max_row_length)] + ['label']
return features
def fill_to_len(row, length = 1000, rule = None):
fill_value = 0
if rule == 'min':
fill_value = row.min()
elif rule == 'mean':
fill_value = row.mean()
elif rule == 'zero':
fill_value = 0
fill_values = pd.Series([fill_value] * (length - len(row)))
return pd.concat([row, fill_values], ignore_index=True)
def get_max_row_len(folder, filenames):
max_len = 0
for filename in filenames:
df = pd.read_excel(os.path.join(folder, filename))
max_len = max(max_len, df.shape[0])
return max_len
__all__ = ['load_data']