Deeplearning/Qtorch/Models/QSVM_BRF.py

75 lines
2.6 KiB
Python
Raw Normal View History

2024-10-07 09:54:32 +08:00
import torch
import torch.nn as nn
import torch.optim as optim
from Qtorch.Models.QSVM import QSVM as svm
class QSVM_BRF(svm):
def __init__(self, data, labels=None, test_size=0.2, random_state=None,
gamma=1.0, C=100, batch_size = 64, learning_rate=0.01):
super().__init__(data, labels, test_size, random_state)
self.gamma, self.C, self.n_features = gamma, C, data.shape[0] - 1
self.support_vectors = torch.cat([batch[0] for batch in self.train_loader])
self.alpha = nn.Parameter(torch.zeros(self.support_vectors.shape[0]))
self.b = nn.Parameter(torch.zeros(1))
self.batch_size = batch_size
self.learning_rate = learning_rate
self.optimizer = optim.SGD(self.parameters(), lr=self.learning_rate)
def rbf_kernel(self, X, Y):
X_norm = (X**2).sum(1).view(-1, 1)
Y_norm = (Y**2).sum(1).view(1, -1)
dist = X_norm + Y_norm - 2.0 * torch.mm(X, Y.t())
return torch.exp(-self.gamma * dist)
def forward(self, X):
K = self.rbf_kernel(X, self.support_vectors)
return torch.mm(K, self.alpha.unsqueeze(1)).squeeze() + self.b
def hinge_loss(self, outputs, targets):
return torch.mean(torch.clamp(1 - outputs * targets, min=0))
def regularization(self):
return 0.5 * (self.alpha ** 2).sum()
def train_model(self, epoch_times=100, learning_rate=0.01):
losses, train_accs, test_accs = [], [], []
for epoch in range(epoch_times):
self.train()
epoch_loss, correct_train, total_train = 0, 0, 0
for batch_X, batch_y in self.train_loader:
self.optimizer.zero_grad()
outputs = self(batch_X)
loss = self.hinge_loss(outputs, batch_y) + self.C * self.regularization()
loss.backward()
self.optimizer.step()
epoch_loss += loss.item()
predicted = torch.sign(outputs)
correct_train += (predicted == batch_y).sum().item()
total_train += batch_y.size(0)
train_acc = correct_train / total_train
test_acc = self.evaluate()
losses.append(epoch_loss / len(self.train_loader))
train_accs.append(train_acc)
test_accs.append(test_acc)
print(f'Epoch [{epoch+1}/{epoch_times}], Loss: {losses[-1]:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
def evaluate(self):
self.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_X, batch_y in self.test_loader:
outputs = self(batch_X)
predicted = torch.sign(outputs)
correct += (predicted == batch_y).sum().item()
total += batch_y.size(0)
return correct / total