init
This commit is contained in:
commit
884db9b926
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
Static
|
||||||
|
Result
|
15
.vscode/launch.json
vendored
Normal file
15
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
{
|
||||||
|
// Use IntelliSense to learn about possible attributes.
|
||||||
|
// Hover to view descriptions of existing attributes.
|
||||||
|
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||||
|
"version": "0.2.0",
|
||||||
|
"configurations": [
|
||||||
|
{
|
||||||
|
"name": "Python Debugger: Current File",
|
||||||
|
"type": "debugpy",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "main.py",
|
||||||
|
"console": "integratedTerminal"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
0
Qfunctions/__init__.py
Normal file
0
Qfunctions/__init__.py
Normal file
BIN
Qfunctions/__pycache__/Qtorch.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/Qtorch.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qfunctions/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qfunctions/__pycache__/divSet.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/divSet.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qfunctions/__pycache__/loaData.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/loaData.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qfunctions/__pycache__/saveToxlsx.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/saveToxlsx.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qfunctions/__pycache__/test.cpython-312.pyc
Normal file
BIN
Qfunctions/__pycache__/test.cpython-312.pyc
Normal file
Binary file not shown.
28
Qfunctions/divSet.py
Normal file
28
Qfunctions/divSet.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
||||||
|
|
||||||
|
def divSet(data, labels = None, test_size=0.2, random_state=None):
|
||||||
|
|
||||||
|
encoder = LabelEncoder()
|
||||||
|
|
||||||
|
# 最后一列是标签
|
||||||
|
X = data.iloc[:, :-1]
|
||||||
|
y = data.iloc[:, -1]
|
||||||
|
|
||||||
|
if labels:
|
||||||
|
labels = encoder.fit_transform(labels)
|
||||||
|
else:
|
||||||
|
encoder.fit(y)
|
||||||
|
|
||||||
|
# 分割数据集为训练集和测试集
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
|
||||||
|
# 标准化特征
|
||||||
|
scaler = StandardScaler()
|
||||||
|
X_train = scaler.fit_transform(X_train)
|
||||||
|
X_test = scaler.transform(X_test)
|
||||||
|
|
||||||
|
# 编码标签
|
||||||
|
y_train = encoder.transform(y_train.values.reshape(-1, 1))
|
||||||
|
y_test = encoder.transform(y_test.values.reshape(-1, 1))
|
||||||
|
|
||||||
|
return X_train, X_test, y_train, y_test, encoder
|
97
Qfunctions/loaData.py
Normal file
97
Qfunctions/loaData.py
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
STATIC_PATH = './Static'
|
||||||
|
|
||||||
|
# 从文件夹中读取所有xlsx文件,每个文件对应一个label
|
||||||
|
# labelNames为label的名字,如果不提供则默认为文件名
|
||||||
|
def load_data(folder, labelNames, isDir):
|
||||||
|
# 检查folder参数
|
||||||
|
if folder is None:
|
||||||
|
raise ValueError("The 'folder' parameter is required.")
|
||||||
|
|
||||||
|
# 检查labelNames参数
|
||||||
|
if labelNames is None:
|
||||||
|
raise ValueError("The 'labelNames' parameter is required if 'folder' does not contain labels.")
|
||||||
|
|
||||||
|
folder = os.path.join(STATIC_PATH, folder)
|
||||||
|
|
||||||
|
# 看看有没有元数据文件夹
|
||||||
|
if not os.path.isdir(folder):
|
||||||
|
raise ValueError(f"The folder '{folder}' does not exist.")
|
||||||
|
|
||||||
|
# fileNames = [f for f in os.listdir(folder) if f.endswith('.xlsx')]
|
||||||
|
|
||||||
|
# # 获取数据的最大行数
|
||||||
|
# max_row_length = get_max_row_len(folder, fileNames)
|
||||||
|
|
||||||
|
# all_features = []
|
||||||
|
|
||||||
|
# for i, fileName in enumerate(fileNames):
|
||||||
|
|
||||||
|
# features = load_xlsx(folder + '/' + fileName, labelNames[i], max_row_length, 'zero')
|
||||||
|
# all_features.append(features)
|
||||||
|
|
||||||
|
# data = pd.concat(all_features, ignore_index = True)
|
||||||
|
|
||||||
|
data = None
|
||||||
|
if not isDir:
|
||||||
|
data = load_from_file(folder=folder, labelNames=labelNames)
|
||||||
|
else:
|
||||||
|
data = load_from_folder(folder=folder, labelNames=labelNames)
|
||||||
|
print(data)
|
||||||
|
return data
|
||||||
|
|
||||||
|
def load_from_folder(folder, labelNames):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def load_from_file(folder, labelNames):
|
||||||
|
fileNames = [labelName + ".xlsx" for labelName in labelNames]
|
||||||
|
# 获取数据的最大行数
|
||||||
|
max_row_length = get_max_row_len(folder, fileNames)
|
||||||
|
all_features = []
|
||||||
|
for i, fileName in enumerate(fileNames):
|
||||||
|
features = load_xlsx(folder + '/' + fileName, labelNames[i], max_row_length, 'zero')
|
||||||
|
all_features.append(features)
|
||||||
|
return pd.concat(all_features, ignore_index = True)
|
||||||
|
|
||||||
|
|
||||||
|
def load_xlsx(fileName, labelName, max_row_length = 1000, fill_rule = None):
|
||||||
|
df = pd.read_excel(fileName)
|
||||||
|
|
||||||
|
# 提取偶数列
|
||||||
|
features = df.iloc[0:, 1::2]
|
||||||
|
features.dropna(inplace=True)
|
||||||
|
features.reset_index(drop=True, inplace=True)
|
||||||
|
|
||||||
|
features = features.T
|
||||||
|
|
||||||
|
# 补全每一行到指定长度
|
||||||
|
features = features.apply(lambda row: fill_to_len(row, max_row_length, fill_rule), axis=1)
|
||||||
|
|
||||||
|
features['label'] = labelName
|
||||||
|
features.columns = [f'feature{i+1}' for i in range(max_row_length)] + ['label']
|
||||||
|
|
||||||
|
return features
|
||||||
|
|
||||||
|
def fill_to_len(row, length = 1000, rule = None):
|
||||||
|
fill_value = 0
|
||||||
|
|
||||||
|
if rule == 'min':
|
||||||
|
fill_value = row.min()
|
||||||
|
elif rule == 'mean':
|
||||||
|
fill_value = row.mean()
|
||||||
|
elif rule == 'zero':
|
||||||
|
fill_value = 0
|
||||||
|
fill_values = pd.Series([fill_value] * (length - len(row)))
|
||||||
|
|
||||||
|
return pd.concat([row, fill_values], ignore_index=True)
|
||||||
|
|
||||||
|
def get_max_row_len(folder, filenames):
|
||||||
|
max_len = 0
|
||||||
|
for filename in filenames:
|
||||||
|
df = pd.read_excel(os.path.join(folder, filename))
|
||||||
|
max_len = max(max_len, df.shape[0])
|
||||||
|
return max_len
|
||||||
|
|
||||||
|
__all__ = ['load_data']
|
13
Qfunctions/saveToxlsx.py
Normal file
13
Qfunctions/saveToxlsx.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
def save_to_xlsx(project_name, file_name, data):
|
||||||
|
os.makedirs(f'Result/{project_name}', exist_ok=True)
|
||||||
|
data.to_excel(f'Result/{project_name}/{file_name}.xlsx', index=True)
|
||||||
|
print("Save successed to " + f'Result/{project_name}/{file_name}.xlsx')
|
||||||
|
|
||||||
|
|
||||||
|
# for filename,data in save_maps.items():
|
||||||
|
# data.to_excel(f'Result/{project_name}/{filename}.xlsx', index=True)
|
||||||
|
# print("Save successed to " + f'Result/{project_name}/{filename}.xlsx')
|
||||||
|
# print('Save to xlsx done!')
|
||||||
|
return
|
17
Qfunctions/test.py
Normal file
17
Qfunctions/test.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
import time
|
||||||
|
from sklearn.neural_network import MLPClassifier
|
||||||
|
from sklearn.metrics import classification_report, accuracy_score
|
||||||
|
|
||||||
|
def MLP(X_train, X_test, y_train, y_test):
|
||||||
|
start_time = time.time()
|
||||||
|
# 训练 MLP 分类器
|
||||||
|
mlp = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, random_state=42)
|
||||||
|
mlp.fit(X_train, y_train)
|
||||||
|
y_pred = mlp.predict(X_test)
|
||||||
|
end_time = time.time()
|
||||||
|
# 打印训练时间
|
||||||
|
print("Training Time:", end_time - start_time, "seconds")
|
||||||
|
# 评估模型
|
||||||
|
print("Accuracy:", accuracy_score(y_test, y_pred))
|
||||||
|
print("Classification Report:")
|
||||||
|
print(classification_report(y_test, y_pred))
|
14
Qtorch/Models/QSVM.py
Normal file
14
Qtorch/Models/QSVM.py
Normal file
@ -0,0 +1,14 @@
|
|||||||
|
from Qtorch.Models.Qnn import Qnn
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
class QSVM(Qnn, ABC):
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None):
|
||||||
|
super().__init__(data, labels, test_size, random_state)
|
||||||
|
self.result.update({
|
||||||
|
"pca_2d" : None,
|
||||||
|
"pca_3d" : None
|
||||||
|
})
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def train_model(self, train_loader, test_loader, epochs):
|
||||||
|
return super().train_model(train_loader, test_loader, epochs)
|
74
Qtorch/Models/QSVM_BRF.py
Normal file
74
Qtorch/Models/QSVM_BRF.py
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
|
||||||
|
from Qtorch.Models.QSVM import QSVM as svm
|
||||||
|
|
||||||
|
class QSVM_BRF(svm):
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None,
|
||||||
|
gamma=1.0, C=100, batch_size = 64, learning_rate=0.01):
|
||||||
|
super().__init__(data, labels, test_size, random_state)
|
||||||
|
self.gamma, self.C, self.n_features = gamma, C, data.shape[0] - 1
|
||||||
|
self.support_vectors = torch.cat([batch[0] for batch in self.train_loader])
|
||||||
|
self.alpha = nn.Parameter(torch.zeros(self.support_vectors.shape[0]))
|
||||||
|
self.b = nn.Parameter(torch.zeros(1))
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.learning_rate = learning_rate
|
||||||
|
self.optimizer = optim.SGD(self.parameters(), lr=self.learning_rate)
|
||||||
|
|
||||||
|
def rbf_kernel(self, X, Y):
|
||||||
|
X_norm = (X**2).sum(1).view(-1, 1)
|
||||||
|
Y_norm = (Y**2).sum(1).view(1, -1)
|
||||||
|
dist = X_norm + Y_norm - 2.0 * torch.mm(X, Y.t())
|
||||||
|
return torch.exp(-self.gamma * dist)
|
||||||
|
|
||||||
|
def forward(self, X):
|
||||||
|
K = self.rbf_kernel(X, self.support_vectors)
|
||||||
|
return torch.mm(K, self.alpha.unsqueeze(1)).squeeze() + self.b
|
||||||
|
|
||||||
|
def hinge_loss(self, outputs, targets):
|
||||||
|
return torch.mean(torch.clamp(1 - outputs * targets, min=0))
|
||||||
|
|
||||||
|
def regularization(self):
|
||||||
|
return 0.5 * (self.alpha ** 2).sum()
|
||||||
|
|
||||||
|
def train_model(self, epoch_times=100, learning_rate=0.01):
|
||||||
|
|
||||||
|
losses, train_accs, test_accs = [], [], []
|
||||||
|
|
||||||
|
for epoch in range(epoch_times):
|
||||||
|
self.train()
|
||||||
|
epoch_loss, correct_train, total_train = 0, 0, 0
|
||||||
|
|
||||||
|
for batch_X, batch_y in self.train_loader:
|
||||||
|
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
outputs = self(batch_X)
|
||||||
|
loss = self.hinge_loss(outputs, batch_y) + self.C * self.regularization()
|
||||||
|
loss.backward()
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
epoch_loss += loss.item()
|
||||||
|
predicted = torch.sign(outputs)
|
||||||
|
correct_train += (predicted == batch_y).sum().item()
|
||||||
|
total_train += batch_y.size(0)
|
||||||
|
|
||||||
|
train_acc = correct_train / total_train
|
||||||
|
test_acc = self.evaluate()
|
||||||
|
|
||||||
|
losses.append(epoch_loss / len(self.train_loader))
|
||||||
|
train_accs.append(train_acc)
|
||||||
|
test_accs.append(test_acc)
|
||||||
|
print(f'Epoch [{epoch+1}/{epoch_times}], Loss: {losses[-1]:.4f}, Train Acc: {train_acc:.4f}, Test Acc: {test_acc:.4f}')
|
||||||
|
|
||||||
|
def evaluate(self):
|
||||||
|
self.eval()
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_X, batch_y in self.test_loader:
|
||||||
|
outputs = self(batch_X)
|
||||||
|
predicted = torch.sign(outputs)
|
||||||
|
correct += (predicted == batch_y).sum().item()
|
||||||
|
total += batch_y.size(0)
|
||||||
|
return correct / total
|
180
Qtorch/Models/Qmlp.py
Normal file
180
Qtorch/Models/Qmlp.py
Normal file
@ -0,0 +1,180 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
from sklearn.preprocessing import LabelEncoder
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
LABEL_ENCODER = LabelEncoder()
|
||||||
|
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
class Qmlp(nn.Module):
|
||||||
|
|
||||||
|
epoch_data = {
|
||||||
|
'epoch': [],
|
||||||
|
'train_loss': [],
|
||||||
|
'train_accuracy': [],
|
||||||
|
'test_accuracy': []
|
||||||
|
}
|
||||||
|
|
||||||
|
labels = None
|
||||||
|
|
||||||
|
def __init__(self, X_train, y_train, X_test, y_test,
|
||||||
|
hidden_layers,
|
||||||
|
labels=None,
|
||||||
|
dropout_rate=0.3
|
||||||
|
):
|
||||||
|
super(Qmlp, self).__init__()
|
||||||
|
|
||||||
|
self.X_train, self.y_train, self.X_test, self.y_test = X_train, y_train, X_test, y_test
|
||||||
|
|
||||||
|
self.labels = labels
|
||||||
|
|
||||||
|
input_size = X_train.shape[1]
|
||||||
|
# input_size = 5
|
||||||
|
print(input_size)
|
||||||
|
num_classes = len(set(y_train))
|
||||||
|
|
||||||
|
self.layers = nn.ModuleList()
|
||||||
|
|
||||||
|
# Input layer to first hidden layer
|
||||||
|
self.layers.append(nn.Linear(input_size, hidden_layers[0]))
|
||||||
|
self.layers.append(nn.BatchNorm1d(hidden_layers[0]))
|
||||||
|
self.layers.append(nn.ReLU())
|
||||||
|
self.layers.append(nn.Dropout(dropout_rate))
|
||||||
|
|
||||||
|
# Create hidden layers
|
||||||
|
for i in range(1, len(hidden_layers)):
|
||||||
|
self.layers.append(nn.Linear(hidden_layers[i-1], hidden_layers[i]))
|
||||||
|
self.layers.append(nn.BatchNorm1d(hidden_layers[i]))
|
||||||
|
self.layers.append(nn.ReLU())
|
||||||
|
self.layers.append(nn.Dropout(dropout_rate))
|
||||||
|
|
||||||
|
# Output layer
|
||||||
|
self.layers.append(nn.Linear(hidden_layers[-1], num_classes))
|
||||||
|
self.__init_weights()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
for layer in self.layers:
|
||||||
|
x = layer(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def __prepare_data(self):
|
||||||
|
|
||||||
|
# Step 2: Prepare the data
|
||||||
|
X_train_tensor = torch.tensor(self.X_train, dtype=torch.float32)
|
||||||
|
self.y_train = LABEL_ENCODER.fit_transform(self.y_train)
|
||||||
|
y_train_tensor = torch.tensor(self.y_train, dtype=torch.long)
|
||||||
|
|
||||||
|
X_test_tensor = torch.tensor(self.X_test, dtype=torch.float32)
|
||||||
|
self.y_test = LABEL_ENCODER.transform(self.y_test)
|
||||||
|
y_test_tensor = torch.tensor(self.y_test, dtype=torch.long)
|
||||||
|
|
||||||
|
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
||||||
|
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
|
||||||
|
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||||
|
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||||
|
|
||||||
|
return train_loader, test_loader
|
||||||
|
|
||||||
|
def __train_model(self, train_loader, test_loader, epochs_times=100):
|
||||||
|
|
||||||
|
model = self.to(DEVICE)
|
||||||
|
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
|
||||||
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10)
|
||||||
|
best_test_accuracy = 0
|
||||||
|
patience = 100
|
||||||
|
counter = 0
|
||||||
|
accuracy_threshold = 0.99 # 99% 的准确率阈值
|
||||||
|
|
||||||
|
for epoch in range(epochs_times):
|
||||||
|
|
||||||
|
model.train()
|
||||||
|
running_loss = 0.0
|
||||||
|
correct_train = 0
|
||||||
|
total_train = 0
|
||||||
|
|
||||||
|
for inputs, labels in train_loader:
|
||||||
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
||||||
|
|
||||||
|
optimizer.zero_grad()
|
||||||
|
outputs = model(inputs)
|
||||||
|
loss = criterion(outputs, labels)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
running_loss += loss.item()
|
||||||
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
|
total_train += labels.size(0)
|
||||||
|
correct_train += (predicted == labels).sum().item()
|
||||||
|
train_accuracy = correct_train / total_train
|
||||||
|
train_loss = running_loss / len(train_loader)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
correct_test = 0
|
||||||
|
total_test = 0
|
||||||
|
all_labels = []
|
||||||
|
all_predicted = []
|
||||||
|
all_prob = []
|
||||||
|
with torch.no_grad():
|
||||||
|
for inputs, labels in test_loader:
|
||||||
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
||||||
|
outputs = model(inputs)
|
||||||
|
prob = torch.nn.functional.softmax(outputs, dim=1)
|
||||||
|
_, predicted = torch.max(outputs.data, 1)
|
||||||
|
total_test += labels.size(0)
|
||||||
|
correct_test += (predicted == labels).sum().item()
|
||||||
|
all_labels.extend(labels.cpu().numpy())
|
||||||
|
all_predicted.extend(predicted.cpu().numpy())
|
||||||
|
all_prob.extend(prob.cpu().numpy())
|
||||||
|
|
||||||
|
test_accuracy = correct_test / total_test
|
||||||
|
print(f'Epoch [{epoch+1}/{epochs_times}], Loss: {train_loss:.4f}, Train Accuracy: {train_accuracy * 100:.2f}%, Test Accuracy: {test_accuracy*100:.2f}%')
|
||||||
|
|
||||||
|
self.epoch_data['epoch'].append(epoch+1)
|
||||||
|
self.epoch_data['train_loss'].append(train_loss)
|
||||||
|
self.epoch_data['train_accuracy'].append(train_accuracy)
|
||||||
|
self.epoch_data['test_accuracy'].append(test_accuracy)
|
||||||
|
|
||||||
|
scheduler.step(train_loss)
|
||||||
|
|
||||||
|
if test_accuracy > best_test_accuracy:
|
||||||
|
best_test_accuracy = test_accuracy
|
||||||
|
counter = 0
|
||||||
|
else:
|
||||||
|
counter += 1
|
||||||
|
|
||||||
|
if counter >= patience and best_test_accuracy >= accuracy_threshold:
|
||||||
|
print(f"Early stopping at epoch {epoch+1}")
|
||||||
|
break
|
||||||
|
|
||||||
|
if self.labels:
|
||||||
|
# labels_encoded = LABEL_ENCODER.fit(self.labels)
|
||||||
|
self.cm = confusion_matrix(all_labels, all_predicted, normalize='true')
|
||||||
|
else:
|
||||||
|
self.cm = confusion_matrix(all_labels, all_predicted, normalize='true')
|
||||||
|
|
||||||
|
|
||||||
|
# self.cm = confusion_matrix(all_labels, all_predicted, normalize='true')
|
||||||
|
print(self.cm)
|
||||||
|
return
|
||||||
|
|
||||||
|
def get_cm(self):
|
||||||
|
return pd.DataFrame(self.cm, columns=self.labels, index=self.labels)
|
||||||
|
|
||||||
|
def get_epoch_data(self):
|
||||||
|
return pd.DataFrame(self.epoch_data)
|
||||||
|
|
||||||
|
def fit(self, epoch_times = 100):
|
||||||
|
|
||||||
|
train_loader, test_loader = self.__prepare_data()
|
||||||
|
self.__train_model(train_loader, test_loader, epochs_times=epoch_times)
|
||||||
|
return
|
||||||
|
def __init_weights(self):
|
||||||
|
for m in self.modules():
|
||||||
|
if isinstance(m, nn.Linear):
|
||||||
|
nn.init.xavier_uniform_(m.weight)
|
||||||
|
nn.init.zeros_(m.bias)
|
105
Qtorch/Models/Qnn.py
Normal file
105
Qtorch/Models/Qnn.py
Normal file
@ -0,0 +1,105 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import pandas as pd
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
from sklearn.metrics import confusion_matrix as cm
|
||||||
|
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
from Qfunctions.divSet import divSet as ds
|
||||||
|
from Qfunctions.saveToxlsx import save_to_xlsx as stx
|
||||||
|
|
||||||
|
|
||||||
|
class Qnn(nn.Module, ABC):
|
||||||
|
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None):
|
||||||
|
super(Qnn, self).__init__()
|
||||||
|
|
||||||
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
# 保存原始labe, 混淆矩阵使用
|
||||||
|
self.original_labels = labels
|
||||||
|
|
||||||
|
# 划分训练集和测试集
|
||||||
|
X_train, X_test, y_train, y_test, self.labels = ds(
|
||||||
|
data=data,
|
||||||
|
labels=labels,
|
||||||
|
test_size=test_size,
|
||||||
|
random_state=random_state
|
||||||
|
)
|
||||||
|
|
||||||
|
self.train_loader, self.test_loader = self.__prepare_data(
|
||||||
|
X_train=X_train,
|
||||||
|
y_train=y_train,
|
||||||
|
X_test=X_test,
|
||||||
|
y_test=y_test
|
||||||
|
)
|
||||||
|
|
||||||
|
# 定义结果
|
||||||
|
self.result = {
|
||||||
|
'acc_and_loss' : {
|
||||||
|
'epoch' : [],
|
||||||
|
'loss': [],
|
||||||
|
'train_accuracy': [],
|
||||||
|
'test_accuracy': [],
|
||||||
|
},
|
||||||
|
'confusion_matrix': None,
|
||||||
|
}
|
||||||
|
|
||||||
|
def accuracy(self, output, target):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# 定义损失函数
|
||||||
|
def hinge_loss(self, output, target):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def train_model(self, train_loader, test_loader, epochs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def confusion_matrix(self, test_outputs):
|
||||||
|
predicted = torch.argmax(test_outputs, dim=1)
|
||||||
|
true_label = torch.argmax(self.y_test, dim=1)
|
||||||
|
return cm(predicted.cpu(), true_label.cpu())
|
||||||
|
|
||||||
|
def fit(self, epochs = 100):
|
||||||
|
self.train_model(epochs)
|
||||||
|
|
||||||
|
def save(self, project_name):
|
||||||
|
for filename, data in self.result.items():
|
||||||
|
if filename == 'confusion_matrix':
|
||||||
|
data = pd.DataFrame(data, columns=self.original_labels, index=self.original_labels)
|
||||||
|
stx(project_name, filename, data)
|
||||||
|
else:
|
||||||
|
data = pd.DataFrame(data)
|
||||||
|
stx(project_name, filename, data)
|
||||||
|
|
||||||
|
def __prepare_data(self, X_train, y_train, X_test, y_test):
|
||||||
|
|
||||||
|
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
|
||||||
|
y_train_tensor = torch.tensor(y_train, dtype=torch.long)
|
||||||
|
|
||||||
|
X_test_tensor = torch.tensor(X_test, dtype=torch.float32)
|
||||||
|
y_test_tensor = torch.tensor(y_test, dtype=torch.long)
|
||||||
|
|
||||||
|
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
||||||
|
test_dataset = TensorDataset(X_test_tensor, y_test_tensor)
|
||||||
|
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||||
|
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||||
|
|
||||||
|
print(train_loader, test_loader)
|
||||||
|
|
||||||
|
return train_loader, test_loader
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
0
Qtorch/Models/__init__.py
Normal file
0
Qtorch/Models/__init__.py
Normal file
BIN
Qtorch/Models/__pycache__/QSVM.cpython-312.pyc
Normal file
BIN
Qtorch/Models/__pycache__/QSVM.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/QSVM_BRF.cpython-312.pyc
Normal file
BIN
Qtorch/Models/__pycache__/QSVM_BRF.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/Qmlp.cpython-310.pyc
Normal file
BIN
Qtorch/Models/__pycache__/Qmlp.cpython-310.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/Qmlp.cpython-312.pyc
Normal file
BIN
Qtorch/Models/__pycache__/Qmlp.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/Qnn.cpython-312.pyc
Normal file
BIN
Qtorch/Models/__pycache__/Qnn.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
Qtorch/Models/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
Qtorch/Models/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
Qtorch/Models/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
0
Qtorch/__init__.py
Normal file
0
Qtorch/__init__.py
Normal file
BIN
Qtorch/__pycache__/Qmlp.cpython-312.pyc
Normal file
BIN
Qtorch/__pycache__/Qmlp.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/__pycache__/Qnn.cpython-312.pyc
Normal file
BIN
Qtorch/__pycache__/Qnn.cpython-312.pyc
Normal file
Binary file not shown.
BIN
Qtorch/__pycache__/__init__.cpython-310.pyc
Normal file
BIN
Qtorch/__pycache__/__init__.cpython-310.pyc
Normal file
Binary file not shown.
BIN
Qtorch/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
Qtorch/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
1
SVM
Submodule
1
SVM
Submodule
@ -0,0 +1 @@
|
|||||||
|
Subproject commit 3aec5f294e817679e61b0833d4f750b9f118cfbc
|
49
catplus
Executable file
49
catplus
Executable file
@ -0,0 +1,49 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# 输出的Markdown文件名
|
||||||
|
output_file="python_files_output.md"
|
||||||
|
|
||||||
|
# 清空或创建输出文件
|
||||||
|
> "$output_file"
|
||||||
|
|
||||||
|
# 递归函数来处理目录
|
||||||
|
process_directory() {
|
||||||
|
local dir="$1"
|
||||||
|
local depth="$2"
|
||||||
|
|
||||||
|
# 添加目录作为标题
|
||||||
|
echo "$(printf '%0.s#' $(seq 1 $depth)) ${dir##*/}" >> "$output_file"
|
||||||
|
echo "" >> "$output_file"
|
||||||
|
|
||||||
|
# 遍历当前目录中的所有.py文件
|
||||||
|
for file in "$dir"/*.py; do
|
||||||
|
# 检查文件是否存在(以防止没有.py文件的情况)
|
||||||
|
if [ -f "$file" ]; then
|
||||||
|
# 将文件名作为子标题写入md文件
|
||||||
|
echo "$(printf '%0.s#' $(seq 1 $((depth + 1)))) ${file##*/}" >> "$output_file"
|
||||||
|
echo "" >> "$output_file"
|
||||||
|
|
||||||
|
# 添加代码块开始标记
|
||||||
|
echo '```python' >> "$output_file"
|
||||||
|
|
||||||
|
# 将Python文件内容添加到md文件
|
||||||
|
cat "$file" >> "$output_file"
|
||||||
|
|
||||||
|
# 添加代码块结束标记
|
||||||
|
echo '```' >> "$output_file"
|
||||||
|
echo "" >> "$output_file"
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
# 递归处理子目录
|
||||||
|
for subdir in "$dir"/*/; do
|
||||||
|
if [ -d "$subdir" ]; then
|
||||||
|
process_directory "$subdir" $((depth + 1))
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
}
|
||||||
|
|
||||||
|
# 从当前目录开始处理
|
||||||
|
process_directory "." 1
|
||||||
|
|
||||||
|
echo "Markdown文件已生成: $output_file"
|
189
main.py
Normal file
189
main.py
Normal file
@ -0,0 +1,189 @@
|
|||||||
|
# frofrom Qtorch.Functions import dLoader
|
||||||
|
from Qtorch.Models.Qmlp import Qmlp
|
||||||
|
from Qfunctions.divSet import divSet
|
||||||
|
from Qfunctions.loaData import load_data as dLoader
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
def main():
|
||||||
|
projet_name = '20241005Sound'
|
||||||
|
label_names =["Accuracy", "Compress", "Distance", "Loss", "Metal", "Python"]
|
||||||
|
data = dLoader(projet_name, label_names, isDir=False)
|
||||||
|
X_train, X_test, y_train, y_test, encoder = divSet(
|
||||||
|
data=data, labels=label_names, test_size= 0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
print(y_train)
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
pca = PCA(n_components=2) # 保留两个主成分
|
||||||
|
principalComponents = pca.fit_transform(X_train)
|
||||||
|
df_pca2d = pd.DataFrame(data=principalComponents, columns=['PC1', 'PC2'])
|
||||||
|
df_pca2d['labels'] = y_train
|
||||||
|
|
||||||
|
pca = PCA(n_components=3) # 保留三个主成分
|
||||||
|
principalComponents = pca.fit_transform(X_train)
|
||||||
|
df_pca3d = pd.DataFrame(data=principalComponents, columns=['PC1', 'PC2', 'PC3'])
|
||||||
|
df_pca3d['labels'] = y_train
|
||||||
|
|
||||||
|
# 保存为CSV文件
|
||||||
|
import os
|
||||||
|
folder = os.path.join("./Result", projet_name)
|
||||||
|
df_pca2d.to_excel(os.path.join(folder, 'pca_2d_points_with_labels.xlsx'), index=False)
|
||||||
|
df_pca3d.to_excel(os.path.join(folder, 'pca_3d_points_with_labels.xlsx'), index=False)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# model = Qmlp(
|
||||||
|
# X_train=X_train, X_test=X_test, y_train=y_train, y_test= y_test,
|
||||||
|
# hidden_layers=[32, 32, 32],
|
||||||
|
# dropout_rate=0
|
||||||
|
# )
|
||||||
|
# model.fit(100)
|
||||||
|
|
||||||
|
# cm = model.get_cm()
|
||||||
|
# epoch_data = model.get_epoch_data()
|
||||||
|
|
||||||
|
# from Qfunctions.saveToxlsx import save_to_xlsx as stx
|
||||||
|
# stx(project_name=projet_name, file_name="cm", data=cm)
|
||||||
|
# stx(project_name=projet_name, file_name="acc_and_loss", data=epoch_data)
|
||||||
|
# print("Done")
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# from sklearn.model_selection import train_test_split
|
||||||
|
# from sklearn.preprocessing import StandardScaler
|
||||||
|
# from sklearn.svm import SVC
|
||||||
|
# from sklearn.model_selection import GridSearchCV
|
||||||
|
# from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
||||||
|
# import pandas as pd
|
||||||
|
|
||||||
|
# if __name__ == '__main__':
|
||||||
|
|
||||||
|
# project_name = '20240829Letters'
|
||||||
|
# labels = None
|
||||||
|
|
||||||
|
# data = ld(project_name, labels)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# svm = SVM(
|
||||||
|
# data=data,
|
||||||
|
# labels=labels
|
||||||
|
# )
|
||||||
|
|
||||||
|
# svm.fit()
|
||||||
|
|
||||||
|
# X, y = data.iloc[:, :-1], data.iloc[:, -1]
|
||||||
|
|
||||||
|
# # 分割数据
|
||||||
|
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=None)
|
||||||
|
|
||||||
|
# # 标准化数据
|
||||||
|
# scaler = StandardScaler()
|
||||||
|
# X_train_scaled = scaler.fit_transform(X_train)
|
||||||
|
# X_test_scaled = scaler.transform(X_test)
|
||||||
|
|
||||||
|
# # 创建 SVM 分类器
|
||||||
|
# svm = SVC(kernel='rbf', random_state=42)
|
||||||
|
|
||||||
|
# # 定义参数网格
|
||||||
|
# param_grid = {
|
||||||
|
# 'C': [0.1, 1, 10, 100],
|
||||||
|
# 'gamma': ['scale', 'auto', 0.1, 1, 10]
|
||||||
|
# }
|
||||||
|
|
||||||
|
# # 使用网格搜索进行超参数调优
|
||||||
|
# grid_search = GridSearchCV(svm, param_grid, cv=5, n_jobs=-1, verbose=2)
|
||||||
|
# grid_search.fit(X_train_scaled, y_train)
|
||||||
|
|
||||||
|
# # 打印最佳参数
|
||||||
|
# print("Best parameters:", grid_search.best_params_)
|
||||||
|
|
||||||
|
# # 使用最佳参数的模型
|
||||||
|
# best_svm = grid_search.best_estimator_
|
||||||
|
|
||||||
|
# # 计算训练集和测试集准确率
|
||||||
|
# y_train_pred = best_svm.predict(X_train_scaled)
|
||||||
|
# train_acc = accuracy_score(y_train, y_train_pred)
|
||||||
|
|
||||||
|
# y_test_pred = best_svm.predict(X_test_scaled)
|
||||||
|
# test_acc = accuracy_score(y_test, y_test_pred)
|
||||||
|
|
||||||
|
# # 在测试集上进行预测
|
||||||
|
# y_pred = best_svm.predict(X_test_scaled)
|
||||||
|
|
||||||
|
# # 计算准确率
|
||||||
|
# accuracy = accuracy_score(y_test, y_pred)
|
||||||
|
# print(f"Accuracy: {accuracy}")
|
||||||
|
|
||||||
|
# # 打印详细的分类报告
|
||||||
|
# print(classification_report(y_test, y_pred))
|
||||||
|
# # 计算并可视化混淆矩阵
|
||||||
|
# cm = confusion_matrix(y_test, y_test_pred, normalize='true')
|
||||||
|
|
||||||
|
# print(cm)
|
||||||
|
# # model = QSVM(
|
||||||
|
# # data=data,
|
||||||
|
# # labels=labels
|
||||||
|
# # )
|
||||||
|
|
||||||
|
# # model.fit(300)
|
||||||
|
# # model.save(project_name)
|
||||||
|
|
||||||
|
|
||||||
|
# # 创建一个 Excel 写入器
|
||||||
|
# # 将分类报告转换为DataFrame
|
||||||
|
# # 获取分类报告
|
||||||
|
|
||||||
|
# report = classification_report(y_test, y_test_pred, output_dict=True)
|
||||||
|
|
||||||
|
# df_report = pd.DataFrame(report).transpose()
|
||||||
|
# with pd.ExcelWriter(f'./Result/{project_name}/svm_results.xlsx') as writer:
|
||||||
|
# from sklearn.decomposition import PCA
|
||||||
|
# pca = PCA()
|
||||||
|
# X_pca = pca.fit_transform(X)
|
||||||
|
# # 创建 2D PCA 坐标的 DataFrame
|
||||||
|
# df_pca_2d = pd.DataFrame(data = X_pca[:, :2], columns = ['First Principal Component', 'Second Principal Component'])
|
||||||
|
# df_pca_2d['Label'] = y
|
||||||
|
# # 创建 3D PCA 坐标的 DataFrame
|
||||||
|
# df_pca_3d = pd.DataFrame(data = X_pca[:, :3], columns = ['First Principal Component', 'Second Principal Component', 'Third Principal Component'])
|
||||||
|
# df_pca_3d['Label'] = y
|
||||||
|
|
||||||
|
# # 将 2D PCA 坐标写入 Excel
|
||||||
|
# df_pca_2d.to_excel(writer, sheet_name='PCA 2D Coordinates', index=False)
|
||||||
|
# df_pca_3d.to_excel(writer, sheet_name='PCA 3D Coordinates', index=False)
|
||||||
|
|
||||||
|
|
||||||
|
# # 将分类报告写入Excel
|
||||||
|
# df_report.to_excel(writer, sheet_name='Classification Report')
|
||||||
|
|
||||||
|
# # 将最佳参数写入Excel
|
||||||
|
# pd.DataFrame([grid_search.best_params_]).to_excel(writer, sheet_name='Best Parameters')
|
||||||
|
|
||||||
|
# # 如果你想保存混淆矩阵
|
||||||
|
# from sklearn.metrics import confusion_matrix
|
||||||
|
# # 创建混淆矩阵并添加标签
|
||||||
|
# cm = confusion_matrix(y_test, y_test_pred, normalize='true')
|
||||||
|
# df_cm = pd.DataFrame(cm, index=labels, columns=labels)
|
||||||
|
# df_cm.index.name = 'True'
|
||||||
|
# df_cm.columns.name = 'Predicted'
|
||||||
|
|
||||||
|
# # 将混淆矩阵写入Excel
|
||||||
|
# df_cm.to_excel(writer, sheet_name='Confusion Matrix')
|
||||||
|
|
||||||
|
# # 如果你想保存训练集和测试集的准确率
|
||||||
|
# train_accuracy = best_svm.score(X_train_scaled, y_train)
|
||||||
|
# test_accuracy = best_svm.score(X_test_scaled, y_test)
|
||||||
|
# pd.DataFrame({
|
||||||
|
# 'Train Accuracy': [train_accuracy],
|
||||||
|
# 'Test Accuracy': [test_accuracy]
|
||||||
|
# }).to_excel(writer, sheet_name='Accuracy')
|
||||||
|
|
||||||
|
# print("Results have been saved to 'svm_results.xlsx'")
|
15
remake/.vscode/launch.json
vendored
Normal file
15
remake/.vscode/launch.json
vendored
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
{
|
||||||
|
// Use IntelliSense to learn about possible attributes.
|
||||||
|
// Hover to view descriptions of existing attributes.
|
||||||
|
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||||
|
"version": "0.2.0",
|
||||||
|
"configurations": [
|
||||||
|
{
|
||||||
|
"name": "Python Debugger: Current File",
|
||||||
|
"type": "debugpy",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "main.py",
|
||||||
|
"console": "integratedTerminal"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
5
remake/Qtorch/Functions/__init__.py
Normal file
5
remake/Qtorch/Functions/__init__.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
from .dataLoader import dLoader
|
||||||
|
from .dataSplitter import dsplit
|
||||||
|
from .resSaver import save_to_xlsx
|
||||||
|
|
||||||
|
__all__ = ['dLoader', 'dsplit', 'save_to_xlsx']
|
BIN
remake/Qtorch/Functions/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
remake/Qtorch/Functions/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/Functions/__pycache__/dataLoader.cpython-312.pyc
Normal file
BIN
remake/Qtorch/Functions/__pycache__/dataLoader.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/Functions/__pycache__/dataSplitter.cpython-312.pyc
Normal file
BIN
remake/Qtorch/Functions/__pycache__/dataSplitter.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/Functions/__pycache__/resSaver.cpython-312.pyc
Normal file
BIN
remake/Qtorch/Functions/__pycache__/resSaver.cpython-312.pyc
Normal file
Binary file not shown.
91
remake/Qtorch/Functions/dataLoader.py
Normal file
91
remake/Qtorch/Functions/dataLoader.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
import os
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
STATIC_PATH = './Static'
|
||||||
|
|
||||||
|
def dLoader(folder, label_names=None):
|
||||||
|
|
||||||
|
"""
|
||||||
|
Load data from Excel files in a specified folder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
folder (str): Name of the folder containing Excel files.
|
||||||
|
label_names (list): Optional list of label names. If not provided, file names will be used.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pandas.DataFrame: Loaded and processed data.
|
||||||
|
"""
|
||||||
|
|
||||||
|
folder_path = os.path.join(STATIC_PATH, folder)
|
||||||
|
file_names = [f for f in os.listdir(folder_path) if f.endswith('.xlsx')]
|
||||||
|
|
||||||
|
|
||||||
|
if not label_names:
|
||||||
|
label_names = [f.split('.')[0] for f in file_names]
|
||||||
|
|
||||||
|
max_row_length = get_max_row_len(folder_path, file_names)
|
||||||
|
|
||||||
|
all_features = []
|
||||||
|
for i, file_name in enumerate(file_names):
|
||||||
|
features = load_xlsx(os.path.join(folder_path, file_name), label_names[i], max_row_length)
|
||||||
|
all_features.append(features)
|
||||||
|
|
||||||
|
return pd.concat(all_features, ignore_index=True)
|
||||||
|
|
||||||
|
def load_xlsx(file_name, label_name, max_row_length, fill_rule='mean'):
|
||||||
|
"""
|
||||||
|
Load and process data from a single Excel file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_name (str): Path to the Excel file.
|
||||||
|
label_name (str): Label for the data in this file.
|
||||||
|
max_row_length (int): Maximum number of rows to consider.
|
||||||
|
fill_rule (str): Rule for filling missing values ('min', 'mean', or None).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pandas.DataFrame: Processed data from the Excel file.
|
||||||
|
"""
|
||||||
|
df = pd.read_excel(file_name)
|
||||||
|
features = df.iloc[0:, 1::2]
|
||||||
|
features.dropna(inplace=True)
|
||||||
|
features.reset_index(drop=True, inplace=True)
|
||||||
|
features = features.T
|
||||||
|
features = features.apply(lambda row: fill_to_len(row, max_row_length, fill_rule), axis=1)
|
||||||
|
|
||||||
|
features['label'] = label_name
|
||||||
|
features.columns = [f'feature{i+1}' for i in range(max_row_length)] + ['label']
|
||||||
|
|
||||||
|
return features
|
||||||
|
|
||||||
|
def fill_to_len(row, length=1000, rule=None):
|
||||||
|
"""
|
||||||
|
Fill a row to a specified length.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
row (pandas.Series): Row to fill.
|
||||||
|
length (int): Desired length of the row.
|
||||||
|
rule (str): Rule for filling ('min', 'mean', or None).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pandas.Series: Filled row.
|
||||||
|
"""
|
||||||
|
fill_value = 0
|
||||||
|
if rule == 'min':
|
||||||
|
fill_value = row.min()
|
||||||
|
elif rule == 'mean':
|
||||||
|
fill_value = row.mean()
|
||||||
|
fill_values = pd.Series([fill_value] * (length - len(row)))
|
||||||
|
return pd.concat([row, fill_values], ignore_index=True)
|
||||||
|
|
||||||
|
def get_max_row_len(folder, filenames):
|
||||||
|
"""
|
||||||
|
Get the maximum row length across all Excel files in a folder.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
folder (str): Path to the folder containing Excel files.
|
||||||
|
filenames (list): List of Excel file names.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
int: Maximum row length.
|
||||||
|
"""
|
||||||
|
return max(pd.read_excel(os.path.join(folder, filename)).shape[0] for filename in filenames)
|
37
remake/Qtorch/Functions/dataSplitter.py
Normal file
37
remake/Qtorch/Functions/dataSplitter.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
from sklearn.model_selection import train_test_split
|
||||||
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
||||||
|
|
||||||
|
def dsplit(data, labels=None, test_size=0.2, random_state=None):
|
||||||
|
"""
|
||||||
|
Split the dataset into training and testing sets.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data (pandas.DataFrame): Input data.
|
||||||
|
labels (list): Optional list of labels.
|
||||||
|
test_size (float): Proportion of the dataset to include in the test split.
|
||||||
|
random_state (int): Random state for reproducibility.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
tuple: X_train, X_test, y_train, y_test, encoded_labels
|
||||||
|
"""
|
||||||
|
encoder = LabelEncoder()
|
||||||
|
|
||||||
|
X = data.iloc[:, :-1]
|
||||||
|
y = data.iloc[:, -1]
|
||||||
|
|
||||||
|
if labels is not None:
|
||||||
|
encoded_labels = encoder.fit_transform(labels)
|
||||||
|
else:
|
||||||
|
encoder.fit(y)
|
||||||
|
encoded_labels = None
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
|
||||||
|
|
||||||
|
scaler = StandardScaler()
|
||||||
|
X_train = scaler.fit_transform(X_train)
|
||||||
|
X_test = scaler.transform(X_test)
|
||||||
|
|
||||||
|
y_train = encoder.transform(y_train.values.ravel())
|
||||||
|
y_test = encoder.transform(y_test.values.ravel())
|
||||||
|
|
||||||
|
return X_train, X_test, y_train, y_test, encoded_labels
|
15
remake/Qtorch/Functions/resSaver.py
Normal file
15
remake/Qtorch/Functions/resSaver.py
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
def save_to_xlsx(project_name, file_name, data):
|
||||||
|
"""
|
||||||
|
Save data to an Excel file.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
project_name (str): Name of the project (used for folder name).
|
||||||
|
file_name (str): Name of the file to save.
|
||||||
|
data (pandas.DataFrame): Data to save.
|
||||||
|
"""
|
||||||
|
os.makedirs(f'Result/{project_name}', exist_ok=True)
|
||||||
|
file_path = f'Result/{project_name}/{file_name}.xlsx'
|
||||||
|
data.to_excel(file_path, index=True)
|
||||||
|
print(f"Data saved successfully to {file_path}")
|
0
remake/Qtorch/__init__.py
Normal file
0
remake/Qtorch/__init__.py
Normal file
BIN
remake/Qtorch/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
remake/Qtorch/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
21
remake/Qtorch/models/QSVM.py
Normal file
21
remake/Qtorch/models/QSVM.py
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
from .Qnn import Qnn
|
||||||
|
|
||||||
|
class QSVM(Qnn):
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None):
|
||||||
|
super(QSVM, self).__init__(data, labels, test_size, random_state)
|
||||||
|
self.result.update({
|
||||||
|
"pca_2d": None,
|
||||||
|
"pca_3d": None
|
||||||
|
})
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# Implement SVM forward pass
|
||||||
|
pass
|
||||||
|
|
||||||
|
def train_model(self, epochs):
|
||||||
|
# Implement SVM training logic
|
||||||
|
pass
|
||||||
|
|
||||||
|
def hinge_loss(self, output, target):
|
||||||
|
# Implement hinge loss
|
||||||
|
pass
|
72
remake/Qtorch/models/Qnn.py
Normal file
72
remake/Qtorch/models/Qnn.py
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import pandas as pd
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from Qtorch.Functions import dsplit
|
||||||
|
from Qtorch.Functions import save_to_xlsx as stx
|
||||||
|
# from sklearn.metrics import confusion_matrix
|
||||||
|
|
||||||
|
class Qnn(nn.Module, ABC):
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None):
|
||||||
|
super(Qnn, self).__init__()
|
||||||
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
self.original_labels = labels
|
||||||
|
|
||||||
|
# Split data
|
||||||
|
self.X_train, self.X_test, self.y_train, self.y_test, self.labels = dsplit(
|
||||||
|
data=data,
|
||||||
|
labels=labels,
|
||||||
|
test_size=test_size,
|
||||||
|
random_state=random_state
|
||||||
|
)
|
||||||
|
|
||||||
|
self.train_loader, self.test_loader = self._prepare_data()
|
||||||
|
|
||||||
|
self.result = {
|
||||||
|
'acc_and_loss': {
|
||||||
|
'epoch': [],
|
||||||
|
'loss': [],
|
||||||
|
'train_accuracy': [],
|
||||||
|
'test_accuracy': [],
|
||||||
|
},
|
||||||
|
'confusion_matrix': None,
|
||||||
|
}
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def forward(self, x):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def train_model(self, epochs):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def fit(self, epochs=100):
|
||||||
|
self.train_model(epochs)
|
||||||
|
|
||||||
|
def save(self, project_name):
|
||||||
|
for filename, data in self.result.items():
|
||||||
|
if filename == 'confusion_matrix':
|
||||||
|
data = pd.DataFrame(data, columns=self.original_labels, index=self.original_labels)
|
||||||
|
else:
|
||||||
|
data = pd.DataFrame(data)
|
||||||
|
stx(project_name, filename, data)
|
||||||
|
|
||||||
|
def _prepare_data(self):
|
||||||
|
X_train_tensor = torch.tensor(self.X_train, dtype=torch.float32)
|
||||||
|
y_train_tensor = torch.tensor(self.y_train, dtype=torch.long)
|
||||||
|
|
||||||
|
X_test_tensor = torch.tensor(self.X_test, dtype=torch.float32)
|
||||||
|
y_test_tensor = torch.tensor(self.y_test, dtype=torch.long)
|
||||||
|
|
||||||
|
train_dataset = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor)
|
||||||
|
test_dataset = torch.utils.data.TensorDataset(X_test_tensor, y_test_tensor)
|
||||||
|
|
||||||
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
||||||
|
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
|
||||||
|
|
||||||
|
return train_loader, test_loader
|
||||||
|
|
||||||
|
# def confusion_matrix(self, test_outputs):
|
||||||
|
# predicted = torch.argmax(test_outputs, dim=1)
|
||||||
|
# true_label = torch.argmax(self.y_test, dim=1)
|
||||||
|
# return confusion_matrix(predicted.cpu(), true_label.cpu())
|
114
remake/Qtorch/models/Qsvm_brf.py
Normal file
114
remake/Qtorch/models/Qsvm_brf.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.optim as optim
|
||||||
|
from tqdm import tqdm
|
||||||
|
from .QSVM import QSVM
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
|
||||||
|
class Qsvm_brf(QSVM):
|
||||||
|
def __init__(self, data, labels=None, test_size=0.2, random_state=None,
|
||||||
|
gamma=1.0, C=100, batch_size=64, learning_rate=0.01):
|
||||||
|
super(Qsvm_brf, self).__init__(data, labels, test_size, random_state)
|
||||||
|
self.to(self.device)
|
||||||
|
self.gamma = gamma
|
||||||
|
self.C = C
|
||||||
|
self.n_features = data.shape[1] - 1
|
||||||
|
self.support_vectors = torch.cat([batch[0] for batch in self.train_loader]).to(self.device)
|
||||||
|
self.alpha = nn.Parameter(torch.zeros(self.support_vectors.shape[0])).to(self.device)
|
||||||
|
self.b = nn.Parameter(torch.zeros(1)).to(self.device)
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.learning_rate = learning_rate
|
||||||
|
print(self.b, self.alpha)
|
||||||
|
print(list(self.parameters()))
|
||||||
|
|
||||||
|
def train_model(self, epochs):
|
||||||
|
self.to(self.device)
|
||||||
|
self.optimizer = optim.SGD(self.parameters(), lr=self.learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(epochs):
|
||||||
|
self.train()
|
||||||
|
total_loss = 0
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
|
||||||
|
progress_bar = tqdm(self.train_loader, desc=f'Epoch {epoch+1}/{epochs}')
|
||||||
|
for batch_X, batch_y in progress_bar:
|
||||||
|
batch_X, batch_y = batch_X.to(self.device), batch_y.to(self.device)
|
||||||
|
|
||||||
|
self.optimizer.zero_grad()
|
||||||
|
|
||||||
|
outputs = self(batch_X)
|
||||||
|
loss = self.hinge_loss(outputs, batch_y) + self.C * self.regularization()
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
self.optimizer.step()
|
||||||
|
|
||||||
|
total_loss += loss.item()
|
||||||
|
predicted = torch.sign(outputs)
|
||||||
|
correct += (predicted == batch_y).sum().item()
|
||||||
|
total += batch_y.size(0)
|
||||||
|
|
||||||
|
progress_bar.set_postfix({
|
||||||
|
'Loss': total_loss / (progress_bar.n + 1),
|
||||||
|
'Acc': 100. * correct / total
|
||||||
|
})
|
||||||
|
|
||||||
|
train_accuracy = correct / total
|
||||||
|
test_accuracy = self.evaluate()
|
||||||
|
|
||||||
|
self.result['acc_and_loss']['epoch'].append(epoch + 1)
|
||||||
|
self.result['acc_and_loss']['loss'].append(total_loss / len(self.train_loader))
|
||||||
|
self.result['acc_and_loss']['train_accuracy'].append(train_accuracy)
|
||||||
|
self.result['acc_and_loss']['test_accuracy'].append(test_accuracy)
|
||||||
|
|
||||||
|
print(f'Epoch [{epoch+1}/{epochs}], Loss: {total_loss/len(self.train_loader):.4f}, '
|
||||||
|
f'Train Acc: {train_accuracy:.4f}, Test Acc: {test_accuracy:.4f}')
|
||||||
|
|
||||||
|
# 计算最终的混淆矩阵
|
||||||
|
self.result['confusion_matrix'] = self.compute_confusion_matrix()
|
||||||
|
|
||||||
|
def compute_confusion_matrix(self):
|
||||||
|
self.eval()
|
||||||
|
all_predictions = []
|
||||||
|
all_labels = []
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_X, batch_y in self.test_loader:
|
||||||
|
batch_X, batch_y = batch_X.to(self.device), batch_y.to(self.device)
|
||||||
|
outputs = self(batch_X)
|
||||||
|
predicted = torch.sign(outputs)
|
||||||
|
|
||||||
|
all_predictions.extend(predicted.cpu().numpy())
|
||||||
|
all_labels.extend(batch_y.cpu().numpy())
|
||||||
|
|
||||||
|
return confusion_matrix(all_labels, all_predictions)
|
||||||
|
|
||||||
|
def evaluate(self):
|
||||||
|
self.eval()
|
||||||
|
correct = 0
|
||||||
|
total = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_X, batch_y in self.test_loader:
|
||||||
|
batch_X, batch_y = batch_X.to(self.device), batch_y.to(self.device)
|
||||||
|
outputs = self(batch_X)
|
||||||
|
predicted = torch.sign(outputs)
|
||||||
|
correct += (predicted == batch_y).sum().item()
|
||||||
|
total += batch_y.size(0)
|
||||||
|
return correct / total
|
||||||
|
|
||||||
|
def rbf_kernel(self, X, Y):
|
||||||
|
X_norm = (X**2).sum(1).view(-1, 1)
|
||||||
|
Y_norm = (Y**2).sum(1).view(1, -1)
|
||||||
|
dist = X_norm + Y_norm - 2.0 * torch.mm(X, Y.t())
|
||||||
|
return torch.exp(-self.gamma * dist)
|
||||||
|
|
||||||
|
def forward(self, X):
|
||||||
|
X = X.to(self.device)
|
||||||
|
K = self.rbf_kernel(X, self.support_vectors)
|
||||||
|
return torch.mm(K, self.alpha.unsqueeze(1)).squeeze() + self.b
|
||||||
|
|
||||||
|
def hinge_loss(self, outputs, targets):
|
||||||
|
return torch.mean(torch.clamp(1 - outputs * targets, min=0))
|
||||||
|
|
||||||
|
def regularization(self):
|
||||||
|
return 0.5 * (self.alpha ** 2).sum()
|
3
remake/Qtorch/models/__init__.py
Normal file
3
remake/Qtorch/models/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .Qsvm_brf import Qsvm_brf
|
||||||
|
|
||||||
|
__all__ = ['Qsvm_brf']
|
BIN
remake/Qtorch/models/__pycache__/QSVM.cpython-312.pyc
Normal file
BIN
remake/Qtorch/models/__pycache__/QSVM.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/models/__pycache__/Qnn.cpython-312.pyc
Normal file
BIN
remake/Qtorch/models/__pycache__/Qnn.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/models/__pycache__/Qsvm_brf.cpython-312.pyc
Normal file
BIN
remake/Qtorch/models/__pycache__/Qsvm_brf.cpython-312.pyc
Normal file
Binary file not shown.
BIN
remake/Qtorch/models/__pycache__/__init__.cpython-312.pyc
Normal file
BIN
remake/Qtorch/models/__pycache__/__init__.cpython-312.pyc
Normal file
Binary file not shown.
0
remake/README.md
Normal file
0
remake/README.md
Normal file
23
remake/main.py
Normal file
23
remake/main.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
from Qtorch.Functions import dLoader
|
||||||
|
from Qtorch.Models.Qmlp import Qmlp
|
||||||
|
from Qfuctions.divSet import divSet
|
||||||
|
|
||||||
|
def main():
|
||||||
|
projet_name = '20240821Sound'
|
||||||
|
label_names = None
|
||||||
|
|
||||||
|
data = dLoader(projet_name, label_names)
|
||||||
|
|
||||||
|
X_train, X_test, y_train, y_test, encoded_labels =
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
110
test.py
Normal file
110
test.py
Normal file
@ -0,0 +1,110 @@
|
|||||||
|
from graphviz import Digraph
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class layer:
|
||||||
|
def __init__(self, graph, name, size, color):
|
||||||
|
self.name = name
|
||||||
|
self.size = size
|
||||||
|
self.color = color
|
||||||
|
self.graph = graph
|
||||||
|
|
||||||
|
def draw():
|
||||||
|
pass
|
||||||
|
|
||||||
|
class input_layer(layer):
|
||||||
|
def __init__(self, graph, size):
|
||||||
|
super().__init__(graph, f"Input Layer({size})", size)
|
||||||
|
self.graph.node(self.name, shape='circle', style='filled', fillcolor=self.color, label=" ")
|
||||||
|
self.graph.attr(label=f'{self.name} Layer({self.size})', fontname='Times New Roman', fontweight='bold', fontsize='36')
|
||||||
|
|
||||||
|
|
||||||
|
def draw_neural_net(input_size, hidden_sizes, num_classes, show_hidden=3):
|
||||||
|
g = Digraph('G', filename='neural_network', format='png')
|
||||||
|
g.attr(rankdir='LR', size='10,8', nodesep='1', ranksep='2', bgcolor='transparent', dpi='300')
|
||||||
|
|
||||||
|
# Input layer
|
||||||
|
with g.subgraph(name='cluster_input') as c:
|
||||||
|
c.attr(color='white')
|
||||||
|
for i in range(input_size):
|
||||||
|
c.node(f'input_{i}', shape='circle', style='filled', fillcolor='darkorange:orange', label=" ")
|
||||||
|
c.attr(label=f'Input Layer({input_size})', fontname='Times New Roman', fontweight='bold', fontsize='36')
|
||||||
|
|
||||||
|
# Hidden layers
|
||||||
|
previous_layer = 'input'
|
||||||
|
previous_layer_size = input_size
|
||||||
|
for layer_idx, hidden_size in enumerate(hidden_sizes):
|
||||||
|
with g.subgraph(name=f'cluster_hidden_{layer_idx}') as c:
|
||||||
|
c.attr(color='white')
|
||||||
|
for i in range(show_hidden):
|
||||||
|
c.node(f'hidden_{layer_idx}_{i}', shape='circle', style='filled', fillcolor='darkgreen:lightgreen', label=" ")
|
||||||
|
if hidden_size > show_hidden * 2:
|
||||||
|
c.node(f'ellipsis_{layer_idx}', shape='plaintext', label='...')
|
||||||
|
for i in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
c.node(f'hidden_{layer_idx}_{i}', shape='circle', style='filled', fillcolor='darkgreen:lightgreen', label=" ")
|
||||||
|
c.attr(label=f'Hidden Layer {layer_idx + 1}({hidden_size})', fontname='Times New Roman', fontweight='bold', fontsize='36')
|
||||||
|
|
||||||
|
# Add edges from previous layer to current hidden layer
|
||||||
|
if layer_idx == 0: # Only connect input layer to first hidden layer
|
||||||
|
for i in range(previous_layer_size):
|
||||||
|
for j in range(show_hidden):
|
||||||
|
g.edge(f'{previous_layer}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
for j in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
g.edge(f'{previous_layer}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
else:
|
||||||
|
for i in range(show_hidden):
|
||||||
|
for j in range(show_hidden):
|
||||||
|
g.edge(f'hidden_{layer_idx - 1}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
for j in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
g.edge(f'hidden_{layer_idx - 1}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
for i in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
for j in range(show_hidden):
|
||||||
|
g.edge(f'hidden_{layer_idx - 1}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
for j in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
g.edge(f'hidden_{layer_idx - 1}_{i}', f'hidden_{layer_idx}_{j}')
|
||||||
|
|
||||||
|
previous_layer = f'hidden_{layer_idx}'
|
||||||
|
previous_layer_size = hidden_size
|
||||||
|
|
||||||
|
# Output layer
|
||||||
|
with g.subgraph(name='cluster_output') as c:
|
||||||
|
c.attr(color='white')
|
||||||
|
for i in range(num_classes):
|
||||||
|
c.node(f'output_{i}', shape='circle', style='filled', fillcolor='darkorange:orange', label=" ")
|
||||||
|
c.attr(label=f'Output Layer({num_classes})', fontname='Times New Roman', fontweight='bold', fontsize='36')
|
||||||
|
|
||||||
|
# Add edges from last hidden layer to output layer
|
||||||
|
# for i in range(previous_layer_size):
|
||||||
|
# for j in range(num_classes):
|
||||||
|
# g.edge(f'{previous_layer}_{i}', f'output_{j}')
|
||||||
|
# # Add edges
|
||||||
|
# # Add edges from input to visible hidden nodes
|
||||||
|
# for i in range(input_size):
|
||||||
|
# for j in range(show_hidden):
|
||||||
|
# g.edge(f'input_{i}', f'hidden_{j}')
|
||||||
|
# for i in range(input_size):
|
||||||
|
# for j in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
# g.edge(f'input_{i}', f'hidden_{j}')
|
||||||
|
|
||||||
|
# # Add edges from visible hidden nodes to output layer
|
||||||
|
# for i in range(show_hidden):
|
||||||
|
# for j in range(num_classes):
|
||||||
|
# g.edge(f'hidden_{i}', f'output_{j}')
|
||||||
|
# for i in range(hidden_size - show_hidden, hidden_size):
|
||||||
|
# for j in range(num_classes):
|
||||||
|
# g.edge(f'hidden_{i}', f'output_{j}')
|
||||||
|
# Add edges from last hidden layer to output layer
|
||||||
|
for i in range(show_hidden):
|
||||||
|
for j in range(num_classes):
|
||||||
|
g.edge(f'{previous_layer}_{i}', f'output_{j}')
|
||||||
|
for i in range(previous_layer_size - show_hidden, previous_layer_size):
|
||||||
|
for j in range(num_classes):
|
||||||
|
g.edge(f'{previous_layer}_{i}', f'output_{j}')
|
||||||
|
|
||||||
|
return g
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
g = draw_neural_net(7, [60, 60], 7)
|
||||||
|
output_path = g.render(view=False)
|
||||||
|
print(output_path)
|
||||||
|
os.system(f'explorer.exe neural_network.png')
|
55
test2.py
Normal file
55
test2.py
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import torch
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
|
||||||
|
# 读取Excel文件
|
||||||
|
df = pd.read_excel('loss-metal-compress.xlsx')
|
||||||
|
|
||||||
|
# 假设你的模型需要的数据是前300行
|
||||||
|
data = df.iloc[300:600, 1].values
|
||||||
|
|
||||||
|
|
||||||
|
# 将数据转换为Tensor
|
||||||
|
data_tensor = torch.tensor(data, dtype=torch.float32).unsqueeze(0) # 增加一个批次维度
|
||||||
|
|
||||||
|
# 需要填充的0的数量
|
||||||
|
padding_size = 371 - data_tensor.size(1)
|
||||||
|
|
||||||
|
# 如果需要填充的0的数量大于0,则进行填充
|
||||||
|
if padding_size > 0:
|
||||||
|
# 创建一个形状为[1, padding_size]的0张量
|
||||||
|
padding_tensor = torch.zeros(1, padding_size, dtype=torch.float32)
|
||||||
|
# 将原始数据和0张量拼接起来
|
||||||
|
data_tensor_padded = torch.cat((data_tensor, padding_tensor), dim=1)
|
||||||
|
else:
|
||||||
|
data_tensor_padded = data_tensor
|
||||||
|
|
||||||
|
# 包装成TensorDataset和DataLoader
|
||||||
|
dataset = TensorDataset(data_tensor_padded)
|
||||||
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
|
||||||
|
|
||||||
|
# 确定设备
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||||
|
# device = 'cpu'
|
||||||
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
|
# 加载你的模型
|
||||||
|
model = torch.load('Sound.pth', map_location=device) # 确保模型加载到正确的设备
|
||||||
|
model.to(device) # 再次确保模型在正确的设备上
|
||||||
|
model.eval() # 设置为评估模式
|
||||||
|
|
||||||
|
# 进行预测
|
||||||
|
predictions = []
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in dataloader:
|
||||||
|
inputs = batch[0].to(device) # 将输入数据移动到相同的设备
|
||||||
|
outputs = model(inputs)
|
||||||
|
_, predicted = torch.max(outputs, 1)
|
||||||
|
predictions.extend(predicted.cpu().numpy()) # 将预测结果移动回CPU并转换为numpy数组
|
||||||
|
|
||||||
|
# 打印预测结果
|
||||||
|
print(predictions)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user