from Qtorch.Models.Qnn import Qnn from abc import ABC, abstractmethod class QSVM(Qnn, ABC): def __init__(self, data, labels=None, test_size=0.2, random_state=None): super().__init__(data, labels, test_size, random_state) self.result.update({ "pca_2d" : None, "pca_3d" : None }) @abstractmethod def train_model(self, train_loader, test_loader, epochs): return super().train_model(train_loader, test_loader, epochs)