from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder def divSet(data, labels = None, test_size=0.2, random_state=None): encoder = LabelEncoder() # 最后一列是标签 X = data.iloc[:, :-1] y = data.iloc[:, -1] if labels: labels = encoder.fit_transform(labels) else: encoder.fit(y) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) # 标准化特征 scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 编码标签 y_train = encoder.transform(y_train.values.reshape(-1, 1)) y_test = encoder.transform(y_test.values.reshape(-1, 1)) return X_train, X_test, y_train, y_test, encoder