from .Qnn import Qnn class QSVM(Qnn): def __init__(self, data, labels=None, test_size=0.2, random_state=None): super(QSVM, self).__init__(data, labels, test_size, random_state) self.result.update({ "pca_2d": None, "pca_3d": None }) def forward(self, x): # Implement SVM forward pass pass def train_model(self, epochs): # Implement SVM training logic pass def hinge_loss(self, output, target): # Implement hinge loss pass